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CATALYTIC PROCESS FOR EFFICIENT ENANTIODIVERGENCE OF
MESO-N,N'-DIACETYL-2-IMIDA

AFRiBRNs AL A A

7O, INDIN FES A
HANS RIRART R RAV\F e ¥

DL-N-ACETYL-2-OXAZOLIDINONES

Noriaki Hashimoto, Tadao Ishizuka and Takehisa Kunieda*

Faculty of Pharmaceutical Sciences, Kumamoto University

5-1, Oe-honmachi, Kumamoto 862-0973, Japan

Received 21 May 1998; revised 22 June 1998; accepted 26 June 1998

st + A rodunstiva ndan~uvlati rataluyrad hy Avasnhaenbldinae  Aacivad  Fen
“Ls . S AR UYY lll\lll\mj lau\}ll Lauu y LA U] VAALAUUIUVIIUIIILD  URILLIVRAL 11 Ulll

conformationally rigid chiral aminoalcohols provideds a practical method for the effective
enantiodivergence of meso-1,3-diacetyl-2-imidazolidinones. This catalytic deacylation is
successfully applied to the kinetic resolution of racemic 1-acetyl-2-oxazolidinones. © 1998 Elsevier
Science Ltd. All rights reserved.

Sterically congested and conformationally fixed 2-oxazolidinones! and 2-imidazolidinones? such as the
tricyclic compounds 1-5 have proven to be excellent chiral auxiliaries for use in highly enantiocontrolled
carbon-carbon bond formation. The conventional method for the preparation of such types of chiral
heterocycles involves an optical resolution step using (15,2R)-2-methoxy- 1-apocamphanecarboxylic acid
(MAC-acid), 3 which is efficient, but tedious and time-consuming. An altemative procedure which has

recently been reported for the enantiodivergence of 1,3-diacetyl-2-imidazolidinones also requires stoichiometric
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3-diacetyl-2-imidazolidinones and dl-1-acetyl-2-oxazolidinones by a borane-mediated reductive mono-
deacetylation, which is catalyzed by the stericaily constrained 2-aminoalcohols, 7 and 8, which are, in tumn,
readily prepared by the ring-opening of the chiral 2-oxazolidinone auxiliaries, 3 and 5, respectively.
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of keiones.” This borane-mediated reduction has been successfu

ily applied i0 ihe enantioseieciive mono-
deacylation of meso-1,3-diacyl-2-imidazolidinones, derived from the cycloaddition of 1,3-diacyl-
2-imidazolones to anthracenes, and which can be readily monodeacylated.?

@0 aminoalcohol (5-10 mol %) w
Lo Ac BH, - SMe, (0.65-0.7 eq v
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proceeded smoothly at room temperature to give (+)-l-acetyl-2-imidazolidinone 11a” with excellent

enantioselectivity, in excess of 99% ee, when (+)-aminoalcohol 7 (5-10 mol%) was used as a catalyst, in
combination with borane-methyl sulfide complexes. In a similar manner, the more bulky meso-compound 10b
(R=Me) also underwent smooth monodeacetylation to give (+)-1-acetyl-2-imidazolidinone 11 b0 with 98% ee.

The stereochemistry of the 11a and b, which are preferentially formed has been previously established.? The
sterically more congested (+)-aminoalcohol 8 was moderately effective, as seen in Table 1, while the
B-methyl oxazaborolidine’ derived from (§)-a., a-diphenyl-2-pyrrolidinemethanol (9) and trimethylboroxine
was much less effective as a catalyst. Thus, the aminoalcohol 7 appears to be the chiral reagent of choice for

Table 1 Enantioselective Monodeacetylation of Meso-1, 3-Diacetyl-2-imidazolidiones (1¢a, b)
MMt ol ond o N n b wn)?dliine Thnwlend Poanies Asalonnlanh lsa /7 Q)
Ldldalysed by uvxazavuiuvniuin PCLIVEU LTV ALTNIIVAILVIIVIY \(/, O )
Aminoalcohol a b)
R (10) Borane (equiv.) Time (h)  Yield (%) % ee
(mol %)
T(10) RH. (0.7) 2 74 99 (11a)
= TRV AV it ! FANRES)
7 (5) BH, (0.65) 2 69 99 (11a)
8 (10) BH, (0.7) 4 31 90 (11a)
<)
9 (10) BH, (0.6) 4 9 78 (123)
1
7 (10) .‘LE’_{?Q_EZ o 8 78 99 (11a)
> ’ FTUICXYIDOIANC (&)

” 7T(10) RH, (0.7) 2 71 98 (11h)
AVAW TNV AFRAF \Ve.7 g AN 7
-~ 1N BH3(0‘15) 8 81 98 Illh\
) +thexylborane (2) VRS

bl

and trimethylboroxine.

a) Isolated vield. b) Determined by HPLC analysis. ¢) With the B-methyl oxazaborolidine derived from 9
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N—ethyl— and N, N'-diethyl-2-imidazolidinones in 5-10% yield, depending on the reaction conditions. When
the more bulky reducing agent, thexylborane, was used in piace of BH,-complexes, the side reactions were
greatly suppressed, resulting in negligible amounts of the N-ethyl compounds. Under the modified conditions
and employing thexylborane in the presence of catalytic amounts of BH,-complexes, the yield was appreciably
improved with no decrease in enantioselectivity (Table 1).8 The optically active 1-acetyl-2-imidazolidinones
11a and b thus obtained, after purification by a single recrystallizaition, serve as excellent precursors for chiral
2-imidazolidinone auxiliaries as has been recently demonstrated.?

This reducing system was sufficiendy effective to permit the facile monodeacetylation of

(_‘ll_a_cggvl-l_m_thTQh(_h_nmg 13 without affecting olefinic function, thus providing a sood nrecursor 1 49 for the
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Intcrcsungly, this catalytic deacylanon process was versatile enough to permit the kinetic optical

(+)-N-acetyl-2-oxazolidinone 16b!0 in 99% ee in 41% yield, in addition to the deacetylated derivative 17b in
72% ee in 56% yield. The use of less amounts of the borane complex (0.6 equiv.) considerably enhanced the
enantioselectivity of 17b, up to 90% ee, but in a reduced yield (below 20%). Exceptionally large differences
in the rate between the enantiomers clearly demonstrate the potential of this method for nonenzymatic kinetic
resolution. In a similar manner, the anthracene-derived cycloadduct 15a (R=H) gave 16all in 98% ee, as
seen in Scheme 3.

R R

Ccrirs . T ey
R‘:i_q 7 (10 mol%) "'717__\0” + W

' N
N ~=0 BH; - SMe, (0.9 eq) \ko N K;ko
A o
(dD-15a,b ¢ THE, 0°C —r.t,4hr 16a, b Ac 17a, b
a) R=H 98% ee (40 %) T1% ee (43 %)
b) R=Me 99% cc (41 %) 72% ee (56 %)

Scheme 3

in both cases, the formation of 3-ethyi-2-oxazolidinones, as mighi be expecied, were noi deiecied.
Deacylation of the 16a and b thus obtained with cesium carbonate followed by single recrystailization
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of versatile chiral tricyclic auxiliaries, and may be applicable to the facile synthesis of chiral building blocks for
vis-diamine and vic-aminoaicohol skeletons which are found in a substantiai number of bioactive compounds.
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Typical procedure for enantioselective monodeacylation :

a) To a stirred solution of 7 (0.05 mmol) and BH;-SMe, (0.1 mmol) in THF (2 ml) was added a solution
of 10a (0.5 eq) and BH;-SMe, (0.25 mmol) in THF (4 ml) at O °C under an atmosphere of argon. After
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gtirrine for 2h at room temnerature t mixture was acidified with 3N HCl. The usual work-un
surring for Zh at room (emperature, the mixture was acig with RC1L The usual work-up,
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whose optical purity was determined to be 99% ee by HPLC analysis on a Chiraicei OD-H coiumn.
b) A solution of 7 (0.05 mmol) and BH;-SMe, (0.1 mmol) in THF (2 ml) was stirred at room
temperature for 15 min, and 10b (0.5 mmol) was then added at 0 °C. To the mixture, a 0.4 M solution
of thexylborane (1 mmol) in THF was added dropwise, followed by stirring at room temperature for 8
h. The work-up, as above, gave an 81% yield of 11b in 98% ee.

9. 14:mp 154.0 °C (from hexane), [o], +161.2° (¢ 1.0, CHCl;), 'H-NMR (500 MHz /CDClL,) §: 5.86
(1H, brs), 4.63 (1H, d, J=8.5 Hz), 3.75 (1H, d,J=8.5 Hz),2.42 (3H, s), 1.58 (3H, s), 1.49 (3H, s), 1.03
(3H, s), 0.73 (3H, s), 0.63 (3H, s). The absolute

comparison with 11a and b.

10. 16b (R=Me) : mp 213 °C (from hexane-CH,Cl,), [al, +204.8° (¢ 1.0, CHCL,), 'H-NMR (270 MHz /
CDCl,) é:7.32 (8H, m), 4.62 (1H, d, J=8.4 Hz), 4.49 (1H, d, J=8.4 Hz), 2.41 (3H, s), 2.09 (3H, s), 1.93
(3H, s).

11. 16a (R=H) : mp 171 °C (from hexane-CH,CL,), [a], +163.6° (¢ 1.0, CHCl;), 'H-NMR (270 MHz /
CDCl,) &:7.32 (8H, m), 5.05 (1H, d, J=3.5 Hz), 4.78 (1H, dd, J=3.5, 8.5 Hz), 4.68 (1H, d, J=3.5 Hz),
4.55 (1H, dd, J=3.5, 8.5 Hz), 2.32 (3H, s).



